Developmental bias in the evolution of phalanges.

نویسندگان

  • Kathryn D Kavanagh
  • Oren Shoval
  • Benjamin B Winslow
  • Uri Alon
  • Brian P Leary
  • Akinori Kan
  • Clifford J Tabin
چکیده

Evolutionary theory has long argued that the entrenched rules of development constrain the range of variations in a given form, but few empirical examples are known. Here we provide evidence for a very deeply conserved skeletal module constraining the morphology of the phalanges within a digit. We measured the sizes of phalanges within populations of two bird species and found that successive phalanges within a digit exhibit predictable relative proportions, whether those phalanges are nearly equal in size or exhibit a more striking gradient in size from large to small. Experimental perturbations during early stages of digit formation demonstrate that the sizes of the phalanges within a digit are regulated as a system rather than individually. However, the sizes of the phalanges are independent of the metatarsals. Temporal studies indicate that the relative sizes of the phalanges are established at the time of initial cell condensation. Measurements of phalanges across species from six major taxonomic lineages showed that the same predictable range of variants is conserved across vast taxonomic diversity and evolutionary time, starting with the very origins of tetrapods. Although in general phalangeal variations fall within a range of nearly equal-sized phalanges to those following a steep large-to-small gradient, a novel derived condition of excessive elongation of the distal-most phalanges has evolved convergently in multiple lineages, for example under selection for grasping rather than walking or swimming. Even in the context of this exception, phalangeal variations observed in nature are a small subset of potential morphospace.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis

Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...

متن کامل

Identification of Synonymous Codon Usage Bias in the Pseudorabies Virus UL31 Gene

Background: Little knowledge of synonymous codon usage pattern of pseudorabies virus (PRV) genome, especially the UL31 gene in the process for its evolution is available. Objectives: In the present study, the codon usage bias between PRV UL31 sequence and the UL31-like sequences was identified. Materials and Methods: We used a comprehensive analysi...

متن کامل

P-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes

Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...

متن کامل

Time, pattern, and heterochrony: a study of hyperphalangy in the dolphin embryo flipper.

The forelimb of whales and dolphins is a flipper that shows hyperphalangy (numerous finger bones). Hyperphalangy is also present in marine reptiles, including ichthyosaurs and plesiosaurs. The developmental basis of hyper-phalangy is unclear. Kükenthal suggested that phalanx anlagen split into three pieces during cetacean development, thereby multiplying the ancestral number. Alternatively, Hol...

متن کامل

Patterns of correlation and covariation of anthropoid distal forelimb segments correspond to Hoxd expression territories.

Anthropoids in general and hominoids in particular exhibit differential adaptations in forearm and digital skeletal proportions to a diverse array of locomotor modes. Hox genes act as selector genes with spatially regulated expression patterns during development. Their expression in the forelimb appears to define modules that specify differential skeletal growth. Here we explore forelimb skelet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 45  شماره 

صفحات  -

تاریخ انتشار 2013